Bayesian Inference for Change Points in Dynamical Systems with Reusable States - a Chinese Restaurant Process Approach
نویسندگان
چکیده
We study a model of a stochastic process with unobserved parameters which suddenly change at random times. The possible parameter values are assumed to be from a finite but unknown set. Using a Chinese restaurant process prior over parameters we develop an efficient MCMC procedure for Bayesian inference. We demonstrate the significance of our approach with an application to systems biology data.
منابع مشابه
Bayesian Estimation of the Multiple Change Points in Gamma Process Using X-bar chart
The process personnel always seek the opportunity to improve the processes. One of the essential steps for process improvement is to quickly recognize the starting time or the change point of a process disturbance. Different from the traditional normally distributed assumption for a process, this study considers a process which follows a gamma process. In addition, we consider the possibility o...
متن کاملDynamic Frailty and Change Point Models for Recurrent Events Data
Abstract. We present a Bayesian analysis for recurrent events data using a nonhomogeneous mixed Poisson point process with a dynamic subject-specific frailty function and a dynamic baseline intensity func- tion. The dynamic subject-specific frailty employs a dynamic piecewise constant function with a known pre-specified grid and the baseline in- tensity uses an unknown grid for the piecewise ...
متن کاملVariational Inference for Sequential Distance Dependent Chinese Restaurant Process
Recently proposed distance dependent Chinese Restaurant Process (ddCRP) generalizes extensively used Chinese Restaurant Process (CRP) by accounting for dependencies between data points. Its posterior is intractable and so far only MCMC methods were used for inference. Because of very different nature of ddCRP no prior developments in variational methods for Bayesian nonparametrics are appliable...
متن کاملVariational Inference for the Nested Chinese Restaurant Process
The nested Chinese restaurant process (nCRP) is a powerful nonparametric Bayesian model for learning tree-based hierarchies from data. Since its posterior distribution is intractable, current inference methods have all relied on MCMC sampling. In this paper, we develop an alternative inference technique based on variational methods. To employ variational methods, we derive a tree-based stick-br...
متن کاملPoisson Process Jumping between an Unknown Number of Rates: Application to Neural Spike Data
We introduce a model where the rate of an inhomogeneous Poisson process is modified by a Chinese restaurant process. Applying a MCMC sampler to this model allows us to do posterior Bayesian inference about the number of states in Poisson-like data. Our sampler is shown to get accurate results for synthetic data and we apply it to V1 neuron spike data to find discrete firing rate states dependin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012